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Abstract 
One of the major problems in cluster analysis is the 
determination of the number of clusters in unlabeled data, 
which is a basic input for most clustering algorithms. Typically, 
the clustering algorithm partitions a dataset into a fixed number 
of clusters supplied by the user, i.e., Given a dataset O 
representing n Objects {o1, o2… on}, clustering aims to partitions 
data into        
c   groups,   i.e., C1, . . . . Cc, so that Ci ∩ Cj = Ø and C1 Ù C2 Ù 
C3 Ù …….Ù Cc =O. The present paper propose a  novel method 
,which is based on Layered Hidden Markov Model(LHMM) to 
identify a suitable number of clusters in a given unlabeled 
dataset without using prior knowledge about the number of 
clusters. For this, the present paper partitions the dataset into 
windows of fixed/different size based on a novel scheme called 
log likelihood values of HMM. The proposed scheme works as a 
framework for identifying the appropriate number of clusters. 
The proposed method is implemented on Iris dataset. The 
experimental results indicate the efficacy of the proposed 
method.  
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1. INTRODUCTION 
Clustering is the process, where a given collection of 
unlabeled patterns (dataset), the data items are divided into 
groups (clusters) based on some measure of similarity [1]. A 
variety of clustering techniques have been proposed in the 
machine learning, pattern recognition, data mining and 
statistics domains. Well known examples include k-means 
[2], fuzzy c-means [3, 4]. Many clustering algorithms require 
the number of clusters ‘c’ as an input parameter, so the 
quality of the resulting clusters is largely dependent on the 
estimation of ‘c’. For some applications, users can determine 
the number of clusters with domain knowledge. However, in 
many situations, the value of ‘c‘ is unknown and needs to be 
estimated from the data themselves. For instance, to cluster 
the dataset using k-means, fuzzy c-means and hierarchical 
clustering [9], the number of clusters must be known a priori. 
Hidden Markov Models (HMM) [5] can also be used for 
classifying patterns from an unknown dataset. 
In this paper, a Layered HMM is used to identify the number 
of clusters in a given dataset. The data items are then labeled 
and partitioned into the appropriate clusters. Initially, the 
HMM is used to calculate log likelihood values for each of 
the data items. Here, the log likelihood values on one hand 
represent how well the data fits the trained HMM and on the 
other provide a similarity measure between data items. Based 
on these log-likelihood values, the dataset is then partitioned 
into windows of fixed size. The plot of the log- likelihood 
values after segmenting into “windows” is used to identify 
the possible number of clusters in the dataset. If the 
difference in the sorted log-likelihood values exceeds some 
threshold, a new cluster is formed. Once the number of 

clusters has been determined, the sorted log-likelihood values 
are used to divide the data items into appropriate clusters 

 
The remainder of the paper is organized as follows. Section-2 
briefly reviews commonly used clustering techniques. In 
section-3, we describe our LHMM based data clustering 
algorithm, and place particular attention to describing the 
process of creating “window” introduced above.  

 
2. BACKGROUND 

In this section, we briefly review the well-known 
unsupervised clustering techniques reported in the literature. 
A more comprehensive review can be found in [1]. The k-
means algorithm is one of the oldest unsupervised clustering 
algorithms [6]. The idea is to group data into k clusters 
(known a priori)    using k-centroids (one for each cluster). 
The performance of clusters thus obtained depends on the 
initial centroid values. The aim of this algorithm is to 
minimize the Euclidean distance between the data points and 
the corresponding cluster centroid, which is achieved by 
minimizing the objective function: 
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  where  xi
(j) is the data point and cj is the jth cluster center. 

An   inherent   assumption   built   into   the k-means   
algorithm   is   that   the   data   points   are   independent. 
Consequently, there is degradation in the algorithm 
effectiveness (accuracy) when the data points are highly 
dependent on each other. The k-means algorithm is not able 
to find the optimal configuration compared with the global 
objective function minimum [7].  
Fuzzy c-means [3, 8] is an improved version of the crisp k-
means algorithm. In this model, each data item is associated 
with every cluster by means of a membership function [9]. In 
the crisp case, data items belong to one cluster (partition) 
only. While in the fuzzy c-means algorithm, the fuzzy 
partition of the N data items into C clusters is obtained by 
selecting N ×C membership matrix U (where an element of 
the matrix U is the degree of membership of data item to 
cluster). Then the following objective function 
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is minimized iteratively using the U matrix. 
 
In   fuzzy   c-means   clustering,   the   introduction   of   “soft   
partitioning”   reduces   problems   associated   with 
identifying local minima. However, the algorithm may still 
converge to local minima by the squared error criterion [1]. 
In addition, the design and initialization of the membership 
function also impact on algorithm performance [3]. 
 

G.S.N. Murthy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 607-610

607



3. THE LAYERED HMM[12] 
he layered hidden Markov model (LHMM) is a statistical 
model derived from the hidden Markov model (HMM). A 
layered hidden Markov model (LHMM) consists of N levels 
of HMMs, where the HMMs on level i + 1 correspond to 
observation symbols or probability generators at level i. 
Every level i of the LHMM consists of Ki HMMs running in 
parallel. 
LHMMs are sometimes useful in specific structures because 
they can facilitate learning and generalization. For example, 
even though a fully connected HMM could always be used if 
enough training data were available, it is often useful to 
constrain the model by not allowing arbitrary state 
transitions. In the same way it can be beneficial to embed the 
HMM in a layered structure which, theoretically, may not be 
able to solve any problems the basic HMM cannot, but can 
solve some problems more efficiently because less training 
data is needed. 
A layered hidden Markov model (LHMM) consists of N 
levels of HMMs where the HMMs on level N + 1 
corresponds to observation symbols or probability generators 
at level N. Every level i of the LHMM consists of Ki HMMs 
running in parallel.  
At any given level L in the LHMM a sequence of TL 
observation symbols OL={O1,O2,…..OTL} can be used to 
classify the input into one of KL classes, where each class 
corresponds to each of the KL HMMs at level L. This 
classification can then be used to generate a new observation 
for the level L − 1 HMMs. At the lowest layer, i.e. level N, 
primitive observation symbols OP={O1,O2,…OTP}would be 
generated directly from observations of the modeled process. 
For example in a trajectory tracking task the primitive 
observation symbols would originate from the quantized 
sensor values. Thus at each layer in the LHMM the 
observations originate from the classification of the 
underlying layer, except for the lowest layer where the 
observation symbols originate from measurements of the 
observed process. 

 
Fig 1:  A layered hidden Markov model 

It is not necessary to run all levels at the same time 
granularity. For example it is possible to use windowing at 
any level in the structure so that the classification takes the 
average of several classifications into consideration before 
passing the results up the layers of the LHMM. 
Instead of simply using the winning HMM at level L + 1 as 
an input symbol for the HMM at level L it is possible to use it 

as a probability generator by passing the complete probability 
distribution up the layers of the LHMM. Thus instead of 
having a "winner takes all" strategy where the most probable 
HMM is selected as an observation symbol, the likelihood 
L(i) of observing the ith HMM can be used in the recursion 
formula of the level L HMM to account for the uncertainty in 
the classification of the HMMs at level L + 1. Thus, if the 
classification of the HMMs at level n + 1 is uncertain, it is 
possible to pay more attention to the a-priori information 
encoded in the HMM at level L. 
A LHMM could in practice be transformed into a single 
layered HMM where all the different models are 
concatenated together. Some of the advantages that may be 
expected from using the LHMM over a large single layer 
HMM is that the LHMM is less likely to suffer from over-
fitting since the individual sub-components are trained 
independently on smaller amounts of data. A consequence of 
this is that a significantly smaller amount of training data is 
required for the LHMM to achieve a performance 
comparable of the HMM. Another advantage is that the 
layers at the bottom of the LHMM, which are more sensitive 
to changes in the environment such as the type of sensors, 
sampling rate etc, can be retrained separately without altering 
the higher layers of the LHMM. The model is shown below 

 
Fig 2: The LHMM based model to cluster multidimensional 

dataset 
 

There are three steps to implement the proposed method. The 
first step consists of training the HMM and producing log-
likelihood values for each of the data items. The second step 
is sorting the log-likelihood values of the dataset according to 
the defined “windows” or “bins”. This process helps in 
identifying the number of clusters. In the third and final step, 
labeling of data items to their respective clusters is carried 
out. 
 
3.1. Generating likelihood values  
A HMM is a finite automaton with a fixed number of states. 
A HMM has the following elements:  

1) N, the number of states,  
2) M, the number of observation symbols,  
3) A, matrix of state transition probabilities,  
4) B, matrix of observation emission probability 
distribution,  
5) ∏, matrix of prior probabilities.  

The parameter set (  A, B, ∏), or simply   λ represents the 
overall HMM model. To fit a model for a given observation 
sequence, the model parameters A , B and  ∏ are chosen in 
such a way that the model can suitably explain the observed 
data. A number of algorithms are available for adjusting the 
parameters of the HMM. The Baum-Welch (BW) algorithm 
is the most widely used technique. In the B-W algorithm, the 
parameters of an   HMM   are   trained   to maximize the 
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probability   of   the   observation   sequence   for a  given   
model.   This optimization is known as the maximum 
likelihood criterion.  
In the sequel, the likelihood function is represented by P(O | 
λ) , where  O  represents the observation  sequence, and  λ  is 
the given model. The next step is to calculate the likelihood 
values. 
Given one observation sequence O=(O1,O2,…..OT), where T 
is the length of the sequence, and the model λ= (A,B,π), then 
for the stste sequence Q=(q1,q2,……qT), we have 

)(),.......()(),|()|(
2211

1
ObObObqO ttt

T

t
t

POP 


 and  

    aaa T
QP .......|

3,22,11                    

Now,          |||, QPQOPQOP   

 
Therefore  

  





T

t
tttt

Q
Oba

qqq
QPQOPOP

T
1

1,1
)(

...
|),|()|(

21


 

 
The complexity of this calculation is O(TNT) multiplications, 
which is very complex. The value of P(O | λ) may however 
be calculated more efficiently using the forward-backward 
procedure[10,11]. Here for completeness, we describe only 
the forward procedure. 
 
3.2 Forward procedure    
In this procedure, a forward variable αt(i) the probability of 
the partial observation sequence up to time T and the state I 
at time t, given the model λ, is defined as 
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This forward variable may be computed as follows: 
Initialization: α1(i)=πi        1≤i≤N. 
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This is a much simpler algorithm that requires only O(N2T) 
multiplications. 
 
The likelihood values may be intereted as follows. Consider 
two  d-dimentional data items dn=(x1n,x2n,…….xdn) and 
dm=(x1m,x2m,……xdm), where xij represents the ith attribute of 
the jth data item in the dataset. If the log-likelihood values 
ln,lm of the above observations are close, then we may infer 
that data items dn and dm should belong to the same cluster. 
 

3.3. Number of Clusters in the Dataset 
The Baum-Welch algorithm maximizes the probability that 
each data item fits the model. The log-likelihood values for 
two data items represent similarity between them [5,13]. 
Since in any datasets, typically, there are two or more 
clusters, it is reasonable to expect that close log-likelihood 
values will gather into one group, while the remaining log-
likelihood values will appear at a distance from this group.  
In order to determine the number of clusters in the dataset, 
we need to process the data based on their corresponding log-

likelihood values. . Figure 3 displays the log-likelihood 
values  of Iris dataset ,along the vertical axis and the 
respective data labels (horizontal axis) for a sample dataset. . 
The data label refers to the record number of the data item in 
the dataset. Log-likelihood values in Figures 3 suggests that 
there are distinct breaks or changes in the curves, which leads 
us to think of dividing lines for possible clusters 
 
3.4. Labeling Data for Clusters 
In the section 3.3 the log-likelihood values were initially 
partitioned into a window of fixed size (width 1 in this case). 
The next task is to label the data items into clusters. To do 
this, we examine the frequency of data items in each of the 
windows. Initially we use a minimum threshold frequency as 
a means of identifying the natural partitions in the dataset. 
Then we merge windows on either side of the partition into a 
variable sized window representing a cluster. The aim is to 
find the minimum number of windows (variable size) such 
that all the similar data items fall into their respective bins. If 
there is no empty window, a threshold value (minimum 
frequency) is subtracted from the frequencies of all windows 
to generate some empty windows. When the   number of 
empty windows is more than the number of clusters 
identified in Section 3.3 , some of the windows (empty as 
well as nonempty) in close neighborhood are merged.  

Fig 3: Number of clusters (Iris Dataset) 
 

4.  DISCUSSION AND CONCLUSION 
An  important  assumption  on  which   the HMM   is  based,  
is  that  there  is  some  relationship  (degree  of correlation) 
between the attributes of particular data items in the dataset 
considered. This in turn provides a measure of similarity 
(log-likelihood values) between the data items. This is in 
contrast to most of the existing clustering methods, which 
assume that each attribute of the data items are independent 
to each other. The HMM based method can clearly identify 
the possible number of clusters in the data set, if there is a 
little or no overlap between   two   adjacent   clusters.   This   
strength   of   identifying   cluster   number   from   scattered   
data   clearly differentiates the proposed method with most of 
the existing clustering techniques.  
A LHMM could in practice be transformed into a single 
layered HMM where all the different models are 
concatenated together. Some of the advantages that may be 
expected from using the LHMM over a large single layer 
HMM is that the LHMM is less likely to suffer from over-
fitting since the individual sub-components are trained 
independently on smaller amounts of data. A consequence of 
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this is that a significantly smaller amount of training data is 
required for the LHMM to achieve a performance 
comparable of the HMM. Another advantage is that the 
layers at the bottom of the LHMM, which are more sensitive 
to changes in the environment such as the type of sensors, 
sampling rate etc, can be retrained separately without altering 
the higher layers of the LHMM.It is worth mentioning that 
the problem of identifying exact partitioning is an ongoing 
research challenge for most of the clustering methods.  
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